Adapting modularity during learning in cooperative co-evolutionary recurrent neural networks
نویسندگان
چکیده
Adaptation during evolution has been an important focus of research in training neural networks. Cooperative coevolution has played a significant role in improving standard evolution of neural networks by organizing the training problem into modules and independently solving them. The number of modules required to represent a neural network is critical to the success of evolution. This paper proposes a framework for the adaptation of the number of modules during evolution. The framework is called adaptive modularity cooperative coevolution. It is used for training recurrent neural networks on grammatical inference problems. The results shows that the proposed approach performs better than its counterparts as the dimensionality of the problem increases.
منابع مشابه
Building Subcomponents in the Cooperative Coevolution Framework for Training Recurrent Neural Networks: Technical Report
Cooperative coevolution decomposes a large problem into its subcomponents and uses evolutionary algorithms for solving them in order to gradually solve the large problem. This paper uses cooperative coevolution framework for training recurrent neural networks for grammatical inference problems. In the past, different encoding schemes were used to build subcomponents from the neural network for ...
متن کاملEncoding subcomponents in cooperative co-evolutionary recurrent neural networks
Cooperative coevolution employs evolutionary algorithms to solve a high-dimensional search problem by decomposing it into low-dimensional subcomponents. Efficient problem decomposition methods or encoding schemes group interacting variables into separate subcomponents in order to solve them separately where possible. It is important to find out which encoding schemes efficiently group separabil...
متن کاملMemetic cooperative coevolution of Elman recurrent neural networks
Cooperative coevolution decomposes an optimisation problem into subcomponents and collectively solves them using evolutionary algorithms. Memetic algorithms provides enhancement to evolutionary algorithms with local search. Recently, the incorporation of local search into a memetic cooperative coevolution method has shown to be efficient for training feedforward networks on pattern classificati...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft Comput.
دوره 16 شماره
صفحات -
تاریخ انتشار 2012